Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Comput Biol Med ; 159: 106890, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320334

ABSTRACT

BACKGROUND AND OBJECTIVES: The progression of pulmonary diseases is a complex progress. Timely predicting whether the patients will progress to the severe stage or not in its early stage is critical to take appropriate hospital treatment. However, this task suffers from the "insufficient and incomplete" data issue since it is clinically impossible to have adequate training samples for one patient at each day. Besides, the training samples are extremely imbalanced since the patients who will progress to the severe stage is far less than those who will not progress to the non-severe stage. METHOD: We consider the severity prediction of pulmonary diseases as a time estimation problem based on CT scans. To handle the issue of "insufficient and incomplete" training samples, we introduced label distribution learning (LDL). Specifically, we generate a label distribution for each patient, making a CT image contribute to not only the learning of its chronological day, but also the learning of its neighboring days. In addition, a cost-sensitive mechanism is introduced to explore the imbalance data issue. To identify the importance of pulmonary segments in pulmonary disease severity prediction, multi-kernel learning in composite kernel space is further incorporated and particle swarm optimization (PSO) is used to find the optimal kernel weights. RESULTS: We compare the performance of the proposed CS-LD-MKSVR algorithm with several classical machine learning algorithms and deep learning (DL) algorithms. The proposed method has obtained the best classification results on the in-house data, fully indicating its effectiveness in pulmonary disease severity prediction. CONTRIBUTIONS: The severity prediction of pulmonary diseases is considered as a time estimation problem, and label distribution is introduced to describe the conversion time from non-severe stage to severe stage. The cost-sensitive mechanism is also introduced to handle the data imbalance issue to further improve the classification performance.


Subject(s)
Algorithms , Lung Diseases , Humans , Lung Diseases/diagnostic imaging , Machine Learning , Tomography, X-Ray Computed
2.
IEEE Access ; 2022.
Article in English | Scopus | ID: covidwho-1699540

ABSTRACT

This paper proposes a new multi-kernel learning ensemble algorithm, called Ada-L1MKL-WSVR, which can be regarded as an extension of multi-kernel learning (MKL) and weighted support vector regression (WSVR). The first novelty is to add the L1 norm of the weights of the combined kernel function to the objective function of WSVR, which is used to adaptively select the optimal base models and their parameters. In addition, an accelerated method based on fast iterative shrinkage thresholding algorithm (FISTA) is developed to solve the weights of the combined kernel function. The second novelty is to propose an integrated learning framework based on AdaBoost, named Ada-L1MKL-WSVR. In this framework, we integrate FISTA into AdaBoost. At each iteration, we optimize the weights of the combined kernel function and update the weights of the training samples at the same time. Then an ensemble regression function of a set of regression functions is output. Finally, two groups of the experiments are designed to verify the performance of our algorithm. On the first group of the experiments including eight datasets from UCI machine learning repository, the MAEs and RMSEs of Ada-L1MKL-WSVR are reduced by 11.14% and 9.08% on average, respectively. Furthermore, on the second group of the experiments including the COVID-19 epidemic datasets from eight countries, the MAEs and RMSEs of Ada-L1MKL-WSVR are reduced by 31.19% and 29.98% on average, respectively. Author

SELECTION OF CITATIONS
SEARCH DETAIL